Back to Blog
9 min readTools

AI-Assisted Development in 2025: The New Developer Workflow

Explore how AI tools like GitHub Copilot, ChatGPT, and Claude are transforming software development, boosting productivity while requiring new skills.

AI-Assisted Development in 2025: The New Developer Workflow

AI-assisted development tools have moved from experimental to essential. These tools don't replace developers—they augment our capabilities, handling routine tasks while we focus on architecture, problem-solving, and creativity.

The AI Development Landscape

Code Completion Tools

GitHub Copilot

  • Context-aware code suggestions
  • Multi-language support
  • Learns from your codebase

Tabnine

  • Privacy-focused (on-premise option)
  • Team learning
  • Smaller, faster models

Amazon CodeWhisperer

  • AWS-optimized suggestions
  • Security scanning
  • Free for individuals

Conversational AI

ChatGPT (OpenAI)

  • Excellent for explaining concepts
  • Code generation and refactoring
  • Debugging assistance

Claude (Anthropic)

  • Long context windows
  • Strong reasoning capabilities
  • Safety-focused

GitHub Copilot Chat

  • IDE-integrated
  • Codebase-aware
  • Multi-file refactoring

Practical Applications

1. Boilerplate Code

AI excels at generating repetitive code:

Before AI:

// Manually writing CRUD endpoints
app.get('/api/users', async (req, res) => {
  try {
    const users = await db.users.findAll();
    res.json(users);
  } catch (error) {
    res.status(500).json({ error: error.message });
  }
});

app.get('/api/users/:id', async (req, res) => {
  // ... similar pattern
});

// Repeat for posts, comments, etc.

With AI:

Prompt: "Generate Express CRUD routes for User, Post, and Comment models with error handling"

// AI generates complete, consistent endpoints in seconds

2. Test Generation

AI can generate comprehensive tests:

Prompt:

Write Jest tests for this function, including edge cases:

function calculateDiscount(price, discountPercent) {
  return price * (1 - discountPercent / 100);
}

AI Output:

describe('calculateDiscount', () => {
  it('should calculate discount correctly', () => {
    expect(calculateDiscount(100, 10)).toBe(90);
    expect(calculateDiscount(50, 20)).toBe(40);
  });

  it('should handle 0% discount', () => {
    expect(calculateDiscount(100, 0)).toBe(100);
  });

  it('should handle 100% discount', () => {
    expect(calculateDiscount(100, 100)).toBe(0);
  });

  it('should handle decimal prices', () => {
    expect(calculateDiscount(99.99, 10)).toBeCloseTo(89.99);
  });

  it('should handle decimal discount percentages', () => {
    expect(calculateDiscount(100, 12.5)).toBe(87.5);
  });

  it('should handle very small numbers', () => {
    expect(calculateDiscount(0.01, 10)).toBeCloseTo(0.009);
  });
});

3. Code Explanation

Understanding unfamiliar code:

Input:

const memoize = (fn) => {
  const cache = new Map();
  return (...args) => {
    const key = JSON.stringify(args);
    if (cache.has(key)) return cache.get(key);
    const result = fn(...args);
    cache.set(key, result);
    return result;
  };
};

AI Explanation:

This is a memoization higher-order function that caches function results:

  1. Creates a Map to store cached results
  2. Returns a new function that intercepts calls
  3. Converts arguments to JSON string as cache key
  4. Returns cached result if available
  5. Otherwise, calls original function and caches result

Use case: Expensive calculations like fibonacci, API calls, etc.

4. Refactoring

Improve code quality:

Before:

function processUser(user) {
  if (user.age >= 18) {
    if (user.country === 'US') {
      if (user.verified) {
        return true;
      }
    }
  }
  return false;
}

Prompt: "Refactor this to be more readable"

AI Output:

function canAccessContent(user) {
  const isAdult = user.age >= 18;
  const isUSUser = user.country === 'US';
  const isVerified = user.verified;

  return isAdult && isUSUser && isVerified;
}

5. Documentation Generation

Auto-generate documentation:

Code:

async function fetchUserWithPosts(userId, options = {}) {
  const { includeDrafts = false, limit = 10 } = options;

  const user = await db.users.findById(userId);
  if (!user) throw new Error('User not found');

  const query = { authorId: userId };
  if (!includeDrafts) query.published = true;

  const posts = await db.posts.find(query).limit(limit);

  return { ...user, posts };
}

AI-Generated Docs:

/**
 * Fetches a user with their posts
 *
 * @async
 * @param {string} userId - The ID of the user to fetch
 * @param {Object} options - Optional parameters
 * @param {boolean} [options.includeDrafts=false] - Whether to include draft posts
 * @param {number} [options.limit=10] - Maximum number of posts to return
 * @returns {Promise<Object>} User object with posts array
 * @throws {Error} If user is not found
 *
 * @example
 * const user = await fetchUserWithPosts('123', { limit: 5 });
 * console.log(user.posts.length); // Up to 5 posts
 */
async function fetchUserWithPosts(userId, options = {}) {
  // ... implementation
}

6. Debugging Assistance

Find and fix bugs:

Buggy Code:

function findDuplicates(arr) {
  const seen = new Set();
  const duplicates = new Set();

  for (let i = 0; i < arr.length; i++) {
    if (seen.has(arr[i])) {
      duplicates.add(arr[i]);
    }
    seen.add(arr[i]);
  }

  return duplicates;
}

console.log(findDuplicates([1, 2, 3, 2, 4, 1]));
// Expected: [1, 2], Actual: Set { 1, 2 }

AI Analysis:

The function returns a Set instead of an array. Fix:

return Array.from(duplicates);

Also consider: Use Array.prototype.filter for a more functional approach.

7. Migration Help

Migrate between frameworks/versions:

Prompt: "Convert this React class component to hooks"

Input:

class Counter extends React.Component {
  constructor(props) {
    super(props);
    this.state = { count: 0 };
  }

  increment = () => {
    this.setState({ count: this.state.count + 1 });
  }

  render() {
    return (
      <div>
        <p>{this.state.count}</p>
        <button onClick={this.increment}>Increment</button>
      </div>
    );
  }
}

AI Output:

function Counter() {
  const [count, setCount] = useState(0);

  const increment = () => {
    setCount(count + 1);
  };

  return (
    <div>
      <p>{count}</p>
      <button onClick={increment}>Increment</button>
    </div>
  );
}

Best Practices

1. Review All AI-Generated Code

Always verify:

  • Security vulnerabilities
  • Performance implications
  • Edge cases
  • Code style consistency
// AI might generate this
const user = await db.query(`SELECT * FROM users WHERE id = ${userId}`);

// You should change to
const user = await db.query('SELECT * FROM users WHERE id = ?', [userId]);
// Prevents SQL injection!

2. Use AI as a Learning Tool

Don't just copy—understand:

// AI suggests this
const unique = [...new Set(array)];

// Ask follow-up:
// "Why use Set? Are there alternatives? What's the time complexity?"

3. Provide Context

Better prompts = better results:

❌ Poor prompt:

"Write a function to sort users"

✅ Good prompt:

"Write a TypeScript function that sorts an array of User objects by lastName (ascending) and then by firstName (ascending). Handle null values by placing them at the end. Include unit tests."

4. Iterate and Refine

AI conversations are iterative:

You: "Create a React form component"
AI: [Generates basic form]
You: "Add validation using Zod"
AI: [Adds validation]
You: "Make it accessible with proper ARIA labels"
AI: [Improves accessibility]

5. Maintain Code Ownership

You're responsible for:

  • Architecture decisions
  • Security
  • Performance
  • Maintenance

AI assists; you decide.

Common Pitfalls

1. Over-Reliance

// Copying without understanding
function mysterySortAlgorithm(arr) {
  // What does this do? How does it work?
  return arr.sort((a, b) =>
    Math.sign(Math.random() - 0.5)
  );
}
// Spoiler: It's a terrible, inefficient shuffle!

2. Security Blindness

// AI generates
app.get('/user/:id', (req, res) => {
  // No authentication check!
  const user = await db.users.findById(req.params.id);
  res.json(user);
});

3. Ignoring Context

AI doesn't know your:

  • Coding standards
  • Architecture patterns
  • Business requirements
  • Performance constraints

4. Not Testing

AI-generated code still needs tests:

// AI generates function
function calculateTax(amount, rate) {
  return amount * rate;
}

// You must verify
it('should calculate tax correctly', () => {
  expect(calculateTax(100, 0.1)).toBe(10);
  expect(calculateTax(0, 0.1)).toBe(0);
  expect(calculateTax(100, 0)).toBe(0);
  // What about negative numbers? Very large numbers?
});

Measuring Impact

Track AI tool effectiveness:

Metrics to Monitor

  • Time saved: Boilerplate generation, documentation
  • Code quality: Bugs introduced vs caught
  • Learning rate: New concepts understood
  • Productivity: Features shipped per sprint

Example Measurement

Before AI tools:
- CRUD endpoints: 2 hours
- Tests: 1 hour
- Documentation: 30 minutes
Total: 3.5 hours

With AI tools:
- CRUD endpoints: 30 minutes (AI generates, you review)
- Tests: 20 minutes (AI generates, you verify)
- Documentation: 5 minutes (AI generates)
Total: 55 minutes

Time saved: ~68%

The Future

Emerging Trends

1. Codebase-Aware AI

AI: "I noticed you use Zod for validation elsewhere.
     Should I use Zod here too?"

2. Autonomous Agents

Task: "Implement user authentication"
AI:
  1. Creates database migration
  2. Implements auth endpoints
  3. Writes tests
  4. Updates documentation
  5. Submits PR for review

3. Predictive Development

AI: "Based on your current feature, you'll likely need:
     - New API endpoint
     - Database migration
     - Frontend form
     Would you like me to generate these?"

Skills for the AI Era

Still Essential

Architecture: AI can't design systems ✅ Problem-solving: Understanding requirements ✅ Code review: Evaluating AI suggestions ✅ Security: Identifying vulnerabilities ✅ Communication: Working with teams ✅ Critical thinking: Questioning assumptions

Newly Important

Prompt engineering: Getting AI to understand needs ✅ AI literacy: Knowing capabilities and limitations ✅ Rapid prototyping: Iterating with AI assistance ✅ Integration: Combining AI-generated components

Ethical Considerations

Copyright and Licensing

  • AI trains on public code
  • Generated code may resemble training data
  • Review licenses for AI tools
  • Your company's IP policy

Attribution

  • Document AI assistance
  • Don't claim AI code as solely yours
  • Be transparent about capabilities

Job Impact

AI augments, not replaces:

  • Junior devs: Better learning tools
  • Senior devs: More time for complex problems
  • Teams: Faster iteration, higher quality

Conclusion

AI-assisted development is here to stay. These tools excel at:

  • Boilerplate code generation
  • Test creation
  • Documentation
  • Code explanation
  • Refactoring suggestions

But they require:

  • Critical review
  • Security awareness
  • Understanding of business context
  • Human oversight

The most productive developers will be those who effectively combine human creativity and judgment with AI's speed and breadth of knowledge.

AI doesn't replace developers—it makes good developers better.

Are you leveraging AI to its fullest potential?

👨‍💻

Jordan Patel

Web Developer & Technology Enthusiast