←Back to Blog
•7 min read•Guide

Ensuring Quality in AI-Generated Code: Production Standards

Learn how to review, test, and ensure AI-generated code meets production quality standards before deployment

Ensuring Quality in AI-Generated Code

AI can generate code fast, but speed means nothing if the code isn't production-ready. Here's how to ensure AI-generated code meets the same quality standards as human-written code.

The Quality Framework

1. Never Trust Blindly

Treat AI like a junior developer: review everything.

// AI generates this:
function calculateDiscount(price, discountPercent) {
  return price - (price * discountPercent / 100);
}

// You review and find issues:
// āŒ No input validation
// āŒ No handling for negative values
// āŒ No type safety
// āŒ Precision issues with floats

// After review and improvements:
function calculateDiscount(price: number, discountPercent: number): number {
  if (typeof price !== 'number' || typeof discountPercent !== 'number') {
    throw new TypeError('Price and discount must be numbers');
  }

  if (price < 0 || discountPercent < 0 || discountPercent > 100) {
    throw new RangeError('Invalid price or discount range');
  }

  // Use Math.round to handle float precision
  const discount = Math.round((price * discountPercent) / 100 * 100) / 100;
  return Math.round((price - discount) * 100) / 100;
}

2. Test Everything

Write comprehensive tests for AI-generated code.

describe('calculateDiscount', () => {
  // Happy path
  test('calculates discount correctly', () => {
    expect(calculateDiscount(100, 10)).toBe(90);
    expect(calculateDiscount(50.50, 20)).toBe(40.40);
  });

  // Edge cases AI might miss
  test('handles zero discount', () => {
    expect(calculateDiscount(100, 0)).toBe(100);
  });

  test('handles 100% discount', () => {
    expect(calculateDiscount(100, 100)).toBe(0);
  });

  // Error cases
  test('throws for negative price', () => {
    expect(() => calculateDiscount(-100, 10)).toThrow(RangeError);
  });

  test('throws for invalid discount', () => {
    expect(() => calculateDiscount(100, 150)).toThrow(RangeError);
  });

  test('throws for non-numeric input', () => {
    expect(() => calculateDiscount('100' as any, 10)).toThrow(TypeError);
  });

  // Precision edge cases
  test('handles floating point precision', () => {
    expect(calculateDiscount(10.01, 10)).toBe(9.01);
  });
});

3. Security Review

AI-generated code may have security vulnerabilities.

Common security issues to check:

// āŒ SQL Injection vulnerability (AI might generate this)
function getUser(userId) {
  return db.query(`SELECT * FROM users WHERE id = ${userId}`);
}

// āœ… Parameterized query
function getUser(userId: string) {
  return db.query('SELECT * FROM users WHERE id = $1', [userId]);
}

// āŒ XSS vulnerability
function renderComment(comment) {
  return `<div>${comment}</div>`;
}

// āœ… Sanitized output
import DOMPurify from 'dompurify';

function renderComment(comment: string) {
  const clean = DOMPurify.sanitize(comment);
  return `<div>${clean}</div>`;
}

// āŒ Insecure password handling
function saveUser(password) {
  return db.users.create({ password });
}

// āœ… Hashed password
import bcrypt from 'bcrypt';

async function saveUser(password: string) {
  const hashedPassword = await bcrypt.hash(password, 10);
  return db.users.create({ password: hashedPassword });
}

4. Performance Review

Check for performance issues.

// āŒ AI generates O(n²) solution
function findDuplicates(arr) {
  const duplicates = [];
  for (let i = 0; i < arr.length; i++) {
    for (let j = i + 1; j < arr.length; j++) {
      if (arr[i] === arr[j] && !duplicates.includes(arr[i])) {
        duplicates.push(arr[i]);
      }
    }
  }
  return duplicates;
}

// āœ… O(n) solution with Set
function findDuplicates(arr: number[]): number[] {
  const seen = new Set<number>();
  const duplicates = new Set<number>();

  for (const item of arr) {
    if (seen.has(item)) {
      duplicates.add(item);
    } else {
      seen.add(item);
    }
  }

  return Array.from(duplicates);
}

Quality Checklist

For every AI-generated code, verify:

Functionality

  • Does it solve the problem correctly?
  • Does it handle edge cases?
  • Does it handle errors gracefully?
  • Are there any logic bugs?

Security

  • No SQL injection vulnerabilities
  • No XSS vulnerabilities
  • No CSRF vulnerabilities
  • Proper input validation
  • Sensitive data properly handled
  • Authentication/authorization correct

Performance

  • Efficient algorithms (time complexity)
  • Efficient data structures (space complexity)
  • No unnecessary loops or calculations
  • Proper caching where needed
  • Database queries optimized

Code Quality

  • Readable and maintainable
  • Properly typed (TypeScript)
  • Good naming conventions
  • Proper error handling
  • Documented where needed
  • Follows project conventions

Testing

  • Unit tests written
  • Edge cases covered
  • Error cases tested
  • Integration tests if needed
  • All tests pass

Accessibility

  • Semantic HTML
  • ARIA labels where needed
  • Keyboard navigation
  • Screen reader friendly

Code Review Process

Step 1: Initial Review

Ask yourself:
1. Does this make sense?
2. Could I explain how it works?
3. Are there obvious issues?
4. Does it match our style guide?

Step 2: Test the Code

# Run tests
npm test

# Check types
npm run type-check

# Lint
npm run lint

# Format
npm run format

Step 3: Manual Testing

1. Test happy path
2. Test edge cases
3. Test error cases
4. Test on different browsers/devices
5. Test with real data

Step 4: Security Scan

# Check for vulnerabilities
npm audit

# Run security linter
npm run lint:security

# Check dependencies
npm outdated

Step 5: Performance Test

// Add performance marks
performance.mark('start');
expensiveFunction();
performance.mark('end');
performance.measure('expensiveFunction', 'start', 'end');

const measure = performance.getEntriesByName('expensiveFunction')[0];
console.log(`Execution time: ${measure.duration}ms`);

Common AI Code Issues

Issue 1: Missing Error Handling

// āŒ AI generated
async function fetchUserData(userId) {
  const response = await fetch(`/api/users/${userId}`);
  return response.json();
}

// āœ… After review
async function fetchUserData(userId: string): Promise<User> {
  try {
    const response = await fetch(`/api/users/${userId}`);

    if (!response.ok) {
      throw new Error(`HTTP error! status: ${response.status}`);
    }

    return await response.json();
  } catch (error) {
    logger.error('Failed to fetch user data', { userId, error });
    throw new UserFetchError('Failed to fetch user data', { cause: error });
  }
}

Issue 2: Type Safety

// āŒ AI uses 'any'
function processData(data: any) {
  return data.items.map((item: any) => item.name);
}

// āœ… Proper types
interface DataItem {
  id: string;
  name: string;
}

interface Data {
  items: DataItem[];
}

function processData(data: Data): string[] {
  return data.items.map(item => item.name);
}

Issue 3: Not Following Project Patterns

// āŒ AI uses different pattern
function UserCard({ user }) {
  return (
    <div className="card">
      <h2>{user.name}</h2>
    </div>
  );
}

// āœ… Following project's component pattern
import { Card } from '@/components/ui/card';
import { Heading } from '@/components/ui/heading';

interface UserCardProps {
  user: User;
}

export function UserCard({ user }: UserCardProps) {
  return (
    <Card>
      <Heading level={2}>{user.name}</Heading>
    </Card>
  );
}

Improving AI Output

Guide AI to generate better code:

"Generate a user authentication function that:
- Uses TypeScript with strict types
- Includes comprehensive error handling
- Validates all inputs with Zod
- Uses bcrypt for password hashing
- Includes JSDoc comments
- Follows security best practices
- Returns detailed error messages
- Includes rate limiting
- Logs authentication attempts"

Documentation Standards

AI code needs good documentation:

/**
 * Calculates the final price after applying a discount
 *
 * @param price - The original price (must be >= 0)
 * @param discountPercent - The discount percentage (0-100)
 * @returns The final price after discount, rounded to 2 decimal places
 * @throws {TypeError} If inputs are not numbers
 * @throws {RangeError} If price is negative or discount is outside 0-100 range
 *
 * @example
 * ```ts
 * calculateDiscount(100, 10); // returns 90
 * calculateDiscount(50.50, 20); // returns 40.40
 * ```
 */
export function calculateDiscount(
  price: number,
  discountPercent: number
): number {
  // Implementation
}

Conclusion

Ensure AI-generated code quality by:

  1. Review everything - Treat AI as junior developer
  2. Test comprehensively - Cover happy path, edge cases, errors
  3. Check security - Scan for common vulnerabilities
  4. Verify performance - Ensure efficient algorithms
  5. Follow standards - Match project conventions
  6. Document properly - Add clear documentation

AI is a powerful tool, but you're responsible for what goes to production. Never skip the review process. Quality matters more than speed.

Build trust in AI-generated code through rigorous review and testing!

šŸ‘Øā€šŸ’»

Jordan Patel

Web Developer & Technology Enthusiast